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Abstract

This paper studies price dynamics in a setting in which a monopolist sells a new experience good over 
time to many buyers, and the seller can neither price discriminate among the buyers nor commit to a price 
rule. Buyers learn from their own experiences about the effectiveness of the product. Individual learning 
generates ex post heterogeneity, which affects the buyers’ purchasing decisions, the monopolist’s pricing 
strategy, and efficiency. When learning occurs through good news signals, buyers receive a rent because of 
the possible advantageous belief caused by short-lived deviations. If a good news signal arrives, the price 
can instantaneously increase or decrease depending on the arrival time of this signal. The equilibrium is 
inefficient because the monopolist’s incentive to exploit known buyers leads to inefficient early termination 
of exploration. When learning occurs through bad news signals, ex post heterogeneity has no such effect, 
since only homogeneous unknown buyers purchase the experience good.
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1. Introduction

In many markets for new experience goods, buyers face huge uncertainty about the effective-
ness or possible side effects of the product. Take as an example the market for new drugs. The 
effectiveness of a new drug critically depends on whether there is an appropriate match between 
this drug and each patient’s particular problems [16]. Patients learn from their own experiences 
(individual learning) about this effectiveness.

This paper investigates how a monopolist sells a new experience good to many buyers over 
time in the presence of individual learning. The monopolist and the buyers initially are equally 
unsure about the effectiveness of the product. How will this monopolist price strategically if she 
observes each buyer’s past actions and outcomes? Without having seen the effectiveness of the 
product, potential purchasers become increasingly pessimistic. In order to keep buyers purchas-
ing the product, the price must be reduced. How will the monopolist react when the product is 
revealed to be effective for one buyer? Will strategic pricing achieve efficient allocation?

In this paper, dynamic monopoly pricing is modeled as an infinite-horizon, continuous-time 
process. The monopolist sells a perishable experience good. She can neither price-discriminate 
across buyers nor commit to a price rule. At each instant of time, the monopolist first posts a 
spot price, which is contingent on the available public information about the experiences of the 
buyers. Each buyer then decides to either buy one unit of the experience good or take an out-
side option (modeled as another good of known characteristics). The experience good generates 
random lump-sum payoffs according to independent Poisson processes. The arrival rate of the 
lump-sum payoffs depends on an unknown individual attribute, which is binary and uncorrelated 
across buyers. For tractability, we assume that the public arrival of lump-sum payoffs immedi-
ately resolves the idiosyncratic uncertainty of the receiver. A key feature of the model is that 
buyers can become ex post heterogeneous in two ways: heterogeneity can be induced by either 
different outcomes or different actions.

We consider two different cases. In the good news case, the experience good generates positive 
lump-sum payoffs; in the bad news case, it generates negative lump-sum damages (e.g., side 
effects of new drugs). This paper fully characterizes the symmetric Markov perfect equilibrium 
for both cases. If a monopolist sells to a single buyer, the equilibrium price is set such that the
buyer is indifferent between purchasing the experience good and taking the outside option. The 
buyer’s purchasing decision is purely myopic since her continuation value is independent of the 
learning outcomes. This leads to an efficient outcome since the monopolist fully internalizes the 
social surplus.

We first characterize the symmetric Markov perfect equilibrium for the good news case in 
which there are two buyers. In phase S, i.e., when no lump-sum payoff has yet arrived, the 
monopolist sells to both unknown buyers before quitting the market (an “unknown” buyer refers 
to a buyer whose valuation of the good has not been revealed); in phase I, i.e., after one buyer has 
received a lump-sum payoff, the critical tradeoff is whether to sell to both buyers or to sell only to 
the known buyer. In both phases, the equilibrium purchasing behavior is determined by a cutoff in 
the posterior belief about the unknown buyer’s individual attribute. Each unknown buyer makes 
a purchase when the posterior belief is above this cutoff and takes the outside option otherwise.

In phase I, the unknown buyer’s purchasing decision is purely myopic as in the single buyer 
case. The key reason for this is that if the monopolist sells to both buyers, the equilibrium price 
is set to make the more pessimistic unknown buyer indifferent. In phase S, however, the presence 
of ex post heterogeneity has two important implications for the equilibrium price.
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First, consider the situation where two ex ante identical unknown buyers make different pur-
chasing decisions. One buyer continues experimentation by purchasing the experience good, 
while the other buyer deviates to take the outside option for a small amount of time. If the exper-
imenter does not receive any lump-sum payoffs during that period, she becomes more pessimistic 
about her individual attribute. Without price discrimination, if the monopolist sells to two differ-
ent buyers, the optimal price is set to make the more pessimistic buyer indifferent between the 
alternatives. The deviator, who is more optimistic about the experience good, pays less than her 
willingness to pay. This implies that it is always profitable for the deviator to cause asymmetric 
beliefs between the other buyer and herself, and the monopolist must provide extra subsidy to 
deter such a short-lived deviation.1 Because of this deterrence effect, the equilibrium price is 
lowered such that each unknown buyer myopically prefers purchasing the experience good than 
taking the outside option.

Second, there is another positive continuation value effect on the price in phase S. This is 
driven by ex post heterogeneity in phase I. In phase I, the monopolist faces a trade-off between 
exploiting the buyer who is known to be good, and exploring the unknown buyer. As long as this 
trade-off is resolved in favor of exploration, the known buyer receives a rent by paying a relatively 
low price. This feeds back to phase S: the monopolist can charge a relatively high price due to 
this extra incentive to experiment. The combination of the deterrence effect and the continuation 
value effect implies that the price response to the first lump-sum payoff is ambiguous. When the 
first lump-sum payoff arrives relatively early, there is an instantaneous drop in the price; whereas, 
when the first lump-sum payoff arrives relatively late, there is an instantaneous jump in the price.

The equilibrium purchasing behavior in the good news case is characterized for an arbitrary 
number of buyers. It turns out that the equilibrium experimentation level is always lower than 
the socially efficient one when at least one buyer has received a lump-sum payoff. This is due 
to the existence of ex post heterogeneity: known buyers are willing to pay more than unknown 
buyers. Without price discrimination, the tradeoff between exploitation and exploration leads to 
inefficient early termination of experimentation.

We then characterize the symmetric Markov perfect equilibrium for the bad news case. It is 
shown that the equilibrium is always efficient. The key insight is that although buyers become 
heterogeneous, the buyers who have received lump-sum damages will never repurchase the ex-
perience good. The only potential buyers are the unknown ones, who are ex post homogeneous 
in a symmetric equilibrium. Another important difference between the good and bad news cases 
is that no extra subsidy is needed in the bad news case since deviations by an unknown buyer 
make the deviator more pessimistic. As a result, there is no deterrence effect and no continuation 
value effect.

1.1. Related literature

Refs. [4] and [19] are two early papers that analyze the impact of price competition on ex-
perimentation. They show that if there is only one buyer, dynamic duopoly competition with 
vertically differentiated products can achieve efficiency. However, [5] show that in the presence 
of social learning, dynamic duopoly competition cannot achieve efficiency. Refs. [6] and [12]

1 This is similar to findings in the dynamic moral hazard model with experimentation (see, e.g., [3,9] and [20]). In these 
papers, it is shown that a misalignment of beliefs between the principal and the agent is always profitable for the agent, 
and must be dissuaded by providing more high-powered incentives. However, the mechanism is due to unobservable 
effort, and hence is different from the one discussed in this paper.
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allow ex ante heterogeneity in the sense that buyers are different in their willingness to pay.2

Both papers assume a continuum of buyers. At each instant of time, an individual buyer makes a 
myopic optimal choice and strategic interactions between buyers do not exist.

Ref. [7] also considers a dynamic monopoly pricing problem, but with a continuum of buyers. 
The difference in crucial modeling assumptions leads them to investigate different properties of 
the equilibrium price path. When the framework of a continuum of buyers is used, it implies 
that no individual buyer can affect the price path of the monopolist, and hence the analysis of 
deviation incentives is greatly simplified. However, it is also impossible to discuss the impact 
of a single good news signal on price.3 Instead, [7] is more concerned with would follow a 
downward trajectory or whether it would eventually go up in equilibrium. Refs. [14] and [15]
develop a different model for dynamic monopoly pricing under social learning. Their model is 
closer to that found in the herding literature: each short-lived buyer makes a purchasing decision 
following a pre-determined sequence. In contrast, in our model, all buyers are long-lived and 
make purchasing decisions repeatedly.

This paper is also closely connected to the continuous-time strategic experimentation litera-
ture. A nonexhaustive list of related papers includes [11,21,22] and [23].4 The analysis of our 
model setting is greatly simplified by the use of exponential bandits, building on [23]. Most re-
search in the strategic experimentation literature assumes a common value environment, in which 
the players’ payoffs are perfectly correlated. This enables us to use a uni-dimensional posterior 
belief as the unique state variable to characterize the value functions. By considering individ-
ual learning, we introduce multi-dimensional posterior beliefs and develop methods to solve this 
dimensionality problem.

In addition to the theoretical body of work, several empirical studies attempt to quantify the 
importance of learning considerations on consumers’ dynamic purchasing behavior. However, 
most existing works have exclusively focused on modeling individual consumer behavior and 
analyzing the impact of idiosyncratic uncertainty (see, e.g., [2,16,18], etc.). This paper comple-
ments this literature by considering how the monopolist seller dynamically adjusts the price in 
the presence of individual learning.

The remainder of this paper is organized as follows. Section 2 introduces the model and de-
fines the solution concept. Section 3 and Section 4 solve a symmetric Markov perfect equilibrium 
and discuss the efficiency of the equilibrium for the good news case and the bad news case, re-
spectively. Section 5 concludes the paper.

2 Ref. [27] also investigates a duopoly model with ex ante heterogeneity along a location. This paper considers a 
two-period model and is mainly concerned about consumer loyalty, i.e., whether in the second period, buyers return to 
the seller that they originally purchased from.

3 In the Web Appendix, we consider an extended good news model with a continuum of buyers. In equilibrium, the 
monopolist will initially decrease the price to encourage experimentation. It turns out that the deterrence effect and the 
continuation effect cancel each other out, and the price is set such that the unknown buyers are myopically indifferent 
between purchasing the experience good and taking the outside option. However, due to the option value of becoming a 
known buyer, each unknown buyer strictly prefers purchasing the experience good.

4 The strategic experimentation framework is also used as a building block to investigate broader issues. For example, 
[26] investigates voting in a strategic experimentation environment; [28] considers a war-of-attrition game in which the 
players are learning about their private payoffs; [3,13,20] and [24] all investigate moral hazard problems when effort 
affects the speed of learning.
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2. Model setting

We consider a continuous-time model with t ∈ [0, +∞) and a positive discount rate r > 0. 
The market consists of n buyers indexed by i = 1, 2, · · · , n and one monopolist, who are all 
risk-neutral. A monopolist with a zero cost of production sells a risky product with unknown 
value.5 At each point in time, a buyer can either buy one unit of the risky product or take a safe 
outside option/product.

If a buyer purchases the safe product, she receives a known deterministic flow payoff s > 0.6

The value of the risky product to a buyer i consists of two components: a deterministic flow 
payoff ξf ≥ 0 and a random lump-sum payoff ξl . The presence of lump-sum payoffs depends on 
the quality of the match between the product and the specific buyer: it is either relevant (κi = 1) 
or irrelevant (κi = 0). The arrival of random lump-sum payoffs ξl is independent across buyers 
and modeled as a Poisson process with intensity λHκi , with λH > 0. The common priors are 
such that ρ0 = Pr(κi = 1) for each buyer i. The product characteristic and the match qualities are 
initially unobservable to all players (seller and buyers), but the parameters λH , ξf , ξl , and ρ0 are 
common knowledge.

We consider two cases for the above setting. In the good news case, ξl > 0 and the arrival of 
lump-sum payoffs makes the risky product more attractive than the safe one. We assume that the 
risky product is superior to the safe one only when the buyers can receive lump-sum payoffs:

Assumption 1 (Good news case). In the good news case, ξl > 0 and ξf < s < ξf + λH ξl .

In the bad news case, ξl < 0 and the arrival of lump-sum payoffs makes the risky product less 
attractive than the safe one. We impose the requirement that the risky product is superior to the 
safe one only when the buyers cannot receive lump-sum payoffs:

Assumption 2 (Bad news case). In the bad news case, ξl < 0 and ξf > s > ξf + λH ξl .

All players observe each buyer’s past actions and outcomes. As a result, both the seller and 
the buyers hold common posterior beliefs about any given buyer’s match quality. In both cases, if 
one buyer receives a lump-sum payoff from the risky product, every player immediately knows 
that the buyer’s match is relevant. The absence of lump-sum payoffs makes it very likely that a 
match is irrelevant.

At each instant of time t , the monopolist first announces a spot price based on previous history 
and then each buyer decides which product to purchase conditional on previous history and the 
announced price. It is assumed that the monopolist can neither price-discriminate across buyers 
nor commit to a price rule.

2.1. Belief updating

Denote by Nit the total number of lump-sum payoffs received by buyer i before time t . Let 
Pt be the price charged by the monopolist at time t . Set ait = 1 if buyer i purchases the risky 

5 The zero cost assumption is simply a normalization. The model with production cost c > 0 is equivalent to another 
one with zero production cost and the flow payoff of the safe product being s′ = s + c.

6 Alternatively, we can assume that the flow payoff is random but drawn from a commonly known distribution with 
expectation s > 0.
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product at time t ; and ait = 0 if buyer i purchases the safe product at time t . Public history before 
time t is defined as:

ht �
({aiτ ,Niτ }ni=1,Pτ

)
0≤τ<t

.

Posterior belief that buyer i’s match is relevant is defined as:

ρit � Pr[κi = 1 | ht ].
Given prior ρ0, the posteriors ρit evolve according to Bayes’ rule. A buyer i who has not received 
any lump-sum payoff before time t expects to receive a lump-sum payoff from the risky product 
with arrival rate λHaitρit . If a lump-sum payoff is received, ρit immediately jumps to 1; other-
wise, ρit obeys the following differential equation at those times t when ait is right continuous7:

ρ̇it = −λH aitρit (1 − ρit ). (1)

2.2. Strategies and payoffs

Throughout the paper, we focus on symmetric Markov perfect equilibria. The natural state 
variables are the posteriors ρ. The state variable ρt is required to be feasible in the sense that

ρt ∈ Σ = {
ρ ∈ [0,1]n : either ρi = 1 or ρi ≤ ρ0 for all i

}
.

Purchasing decision Buyer i’s acceptance policy is a function of states ρ and price P

αi : Σ ×R→ {0,1}.
Since lump-sum payoffs arrive at rate ρitλH , the expected flow of utility associated with 

purchasing decision ait is

aitρitλH ξl + ait (ξf − Pt) + (1 − ait )s.

The choice of ait affects not only flow utility but also how beliefs ρt are updated. Given be-
liefs ρ ∈ Σ , monopolist’s strategy P and other buyers’ strategies α−i , buyer i’s value (sum of 
normalized expected discounted utility) from purchasing strategy αi is

Ui(αi,P,α−i;ρ) = E

∫
re−rt

{
αi(ρt , Pt )(ρitλH ξl + ξf − Pt ) + (

1 − αi(ρt , Pt )
)
s
}
dt

where the expectation is taken over {ρt : t ∈ [0, ∞)} with ρ0 = ρ.

7 If buyer i has not received good news within the time period [t, t +h), then the posterior belief ρi,t+h can be written 
as:

ρi,t+h = ρit e
−λH

∫ h
0 ai,t+τ dτ

ρit e
−λH

∫ h
0 ai,t+τ dτ + 1 − ρit

.

Since aiτ is right continuous with respect to time at time t , there exists some h̄ > 0 such that ai,t+τ = ai,t for all τ ≤ h̄. 
Hence by definition:

ρ̇it = lim
h→0

ρi,t+h − ρi,t

h
= −λH ait ρit (1 − ρit ).
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Pricing decision Given prior ρ0, the monopolist’s price is a function of states ρ

P : Σ →R.

Given buyers’ strategies {αi}ni=1, the flow profits associated with price Pt are∑n
i=1 αi(ρt , Pt )Pt . The choice of Pt affects not only flow profits but also purchasing deci-

sions and as a result how beliefs are updated. Given beliefs ρ and buyers’ strategies {αi}ni=1, the 
monopolist’s value (sum of normalized expected discounted profits) from the pricing policy P is

J (P,α;ρ) = E

∫
re−rt

n∑
i=1

αi

(
ρt , P (ρt )

)
P(ρt )dt

where the expectation is taken over {ρt : t ∈ [0, ∞)} with ρ0 = ρ.

Admissible strategies A critical issue associated with continuous time model setting is that a 
well-defined strategy profile need not yield a well-defined outcome ([8] and [25]). Some re-
strictions on strategies must be imposed to overcome this issue. One requirement is that the 
Markovian strategy profile (P, α) be admissible. The formal definition can be found in Ap-
pendix A. If a strategy profile satisfies this requirement, the induced outcome is well behaved in 
the sense that the purchasing decisions ait and pricing decisions Pt are right continuous functions 
in the absence of lump-sum payoffs.

2.3. Symmetric Markov perfect equilibrium

We consider a symmetric Markov perfect equilibrium. The formal definition of our solution 
concept is the following:

Definition 1. Given prior ρ0, an admissible Markovian strategy profile {P ∗, α∗} is a Markov 
perfect equilibrium if for all i, feasible beliefs ρ and all admissible strategies P̃ and α̃i

8:

J
(
P ∗, α∗;ρ) ≥ J

(
P̃ , α∗;ρ)

and Ui

(
α∗

i , P ∗, α∗−i;ρ
) ≥ Ui

(
α̃i ,P

∗, α∗−i;ρ
)
.

Moreover, {P ∗, α∗} is symmetric if for all permutations π : {1, · · · , n} → {1, · · · , n}, P(ρ̃) =
P(ρ) where ρ̃i = ρπ−1(i) and αi(ρ, P) = απ(i)(ρ̃, P).

3. Equilibrium in the good news case

In the good news case, ξl > 0 and the arrival of a lump-sum payoff makes the risky product 
more valuable to the receiver of this payoff. In this section, we normalize ξf = 0 and ξl = v > 0. 
Assumption 1 implies g � λH v > s > 0.

With two players, there are only two situations to consider: 1) phase S, in which neither buyer 
has received good news; and 2) phase I, in which one buyer has received good news. Obviously, 
when both buyers have received good news, the monopolist should charge price g − s to extract 
the full surplus.

8 Strategies P̃ and α̃i need not be Markovian. The definition of admissible non-Markovian strategies can also be found 
in Appendix A.
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3.1. Socially efficient allocation

Before solving for a symmetric Markov perfect equilibrium, we first solve for the socially 
efficient allocation. The linear utility function enables us to obtain the efficient allocation policy 
by solving a specific multi-armed bandit problem, in which payoffs are given by the aggregate 
surplus.

Suppose k ≤ n buyers have received good news; then it is socially optimal for them to keep 
purchasing the risky product following Assumption 2 and the social surplus function is

Ωk(ρ) = kg + (n − k)W(ρ)

where

W(ρ) = sup
{αt }t∈R+∈Γ

E

∞∫
t=0

re−rt
[
αtρtg + (1 − αt )s

]
dt

is the optimal value for an unknown buyer with posterior belief ρ. Γ in the above definition 
denotes the set of sequences {αt}t∈R+ satisfying αt ∈ {0, 1} for all t ∈ R+, and αt being right 
continuous in t .

Since the unknown buyers are facing a standard independent two-armed bandit problem, pre-
vious research (see [23]) has characterized the optimal cutoff and value function W . It is efficient 
for the unknown buyers to stop purchasing the risky product once the posterior belief ρ reaches

ρe = rs

(r + λH )g − λH s

if no lump-sum payoff has yet been received. The efficient cutoff ρe does not depend on the 
priors ρ0.

3.2. Equilibrium characterization for n = 2

In the two-buyer case, there are three situations to consider. In phase S, denote US as the 
value function for each unknown buyer; and JS as the value function for the monopolist. In 
phase I, denote UI as the value function for the unknown buyer; VI as the value function for the 
known buyer; and JI as the value function for the monopolist. When both buyers have received 
lump-sum payoffs, denote V2 as the value function for the known buyers, and J2 as the value 
function for the monopolist.

For ζ = S, I , denote α0
ζ (α1

ζ ) as the strategy used by the known (unknown) buyers. Let Pζ be 

the price charged by the monopolist. Then Definition 1 implies that a triple of (Pζ , α0
ζ , α

1
ζ ) is a 

symmetric Markov perfect equilibrium if the following conditions are satisfied:

• for ζ = I , α0
ζ = 1 if P ≤ g − s and =0 otherwise;

• for ζ = S, the unknown buyers choose acceptance policy α1
ζ to maximize (α1

ζ should vary 
with time, and the same is true for ζ = I ):

Uζ (ρ) = sup
α1

ζ

E

{ τ∫
t=0

re−rt
[
α1

ζ

(
ρtg − Pζ (ρt )

) + (
1 − α1

ζ

)
s
]
dt

+ e−rτ

(
1

2
VI (ρτ ) + 1

2
UI (ρτ )

)}
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and given α1
ζ , the monopolist chooses price Pζ (ρt ) to maximize

Jζ (ρ) = sup
Pζ (·)

E

{ τ∫
t=0

2re−rtα1
ζ

(
ρt ,Pζ (ρt )

)
Pζ (ρt )dt + e−rτ JI (ρτ )

}
,

where τ is the first (possibly infinite) time at which a new unknown buyer receives good 
news;

• for ζ = I , the unknown buyer chooses acceptance policy α1
ζ to maximize:

Uζ (ρ) = sup
α1

ζ

E

{ τ∫
t=0

re−rt
[
α1

ζ

(
ρtg − Pζ (ρt )

) + (
1 − α1

ζ

)
s
]
dt + e−rτ V2(ρτ )

}

and given (α0
ζ , α

1
ζ ), the monopolist chooses price Pζ (ρt ) to maximize

Jζ (ρ) = sup
Pζ

E

{ τ∫
t=0

re−rt
[
α0

ζ

(
ρt ,Pζ (ρt )

) + α1
ζ

(
ρt ,Pζ (ρt )

)]
Pζ (ρt )dt + e−rτ J2(ρτ )

}
;

• beliefs update according to Bayes’ rule: ρt satisfies the law of motion, i.e., Eq. (1);
• when both buyers have received lump-sum payoffs, the price is g−s, such that J2 = 2(g−s)

and V2 = s.

First, it is straightforward to see that the known buyers always buy the risky product if the 
price is lower than g − s and do not buy otherwise. Second, when both unknown buyers purchase 
the risky product, the conditional probability that any given unknown buyer becomes good is 
simply 1/2, since the two unknown buyers’ payoff distributions are identical. Finally, if both 
buyers have received lump-sum payoffs, it is optimal for the monopolist to charge price g − s to 
extract all of the surplus.

3.2.1. Equilibrium in phase I
A backward procedure is used to characterize the equilibrium. In phase I, the equilibrium 

cutoff ρ

I and the various value functions are provided by the following proposition. The proofs 

of the following and all subsequent results can be found in Appendix B.

Proposition 1. Fix any symmetric Markov perfect equilibrium. In phase I, the unknown buyer 
purchases the risky product if and only if the posterior belief ρ is larger than

ρ

I �

r(g + s)

2rg + λH (g − s)
.

The equilibrium price is PI (ρ) = gρ − s and the unknown buyer receives value UI(ρ) = s; the 
known buyer receives value

VI (ρ) = max

{
s, s + g(1 − ρ)

(
1 −

[
(1 − ρ)ρ


I

ρ(1 − ρ

I )

]r/λH
)}

; (2)

and the monopolist receives value

JI (ρ) =
{

2(gρ − s) + (g + s − 2gρ

I )

1−ρ
1−ρ


I
[ (1−ρ)ρ


I

(1−ρ

I )ρ

]r/λH if ρ > ρ

I

g − s otherwise.
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It is straightforward to see that the equilibrium cutoff ρ

I is strictly larger than the efficient 

cutoff ρe. This is because ex post heterogeneity means that the known buyer is willing to pay 
more than the unknown buyer. In the absence of price discrimination, the monopolist faces a 
tradeoff between exploiting the buyer who is known to be good, and exploring the unknown 
buyer. The incentive to charge a high price and extract the full surplus from the known buyer 
causes inefficient early termination of exploration. Another remark is that the unknown buyer 
is myopically indifferent between purchasing the risky product or not since there is no learning 
value attached to the purchasing behavior (the unknown buyer always receives value s regardless 
of whether she receives a lump-sum payoff).

3.2.2. Equilibrium in phase S
Now consider the situation in which none of the buyers have received lump-sum payoffs yet. 

Assume that the posterior belief ρ is large enough that both buyers purchase the risky product 
in equilibrium. Since ρ


I > ρe , it is natural to construct an equilibrium such that ρ

I > ρ


S . As a 
result, there are two cases to consider: ρ ≥ ρ


I and ρ < ρ

I .9

To characterize the equilibrium price and cutoff, we proceed as follows. First, we use the 
incentive compatibility constraint to derive the value function of the experimenting buyers. Sec-
ond, we derive expressions of equilibrium price and the monopolist’s value function based on the 
experimenting buyers’ value function derived in the first step. Finally, we apply value matching 
and smooth pasting conditions (see, e.g., [17]) to pin down the equilibrium cutoff.

To ensure that both unknown buyers continue to experiment, a necessary condition requires 
both i) each buyer has an incentive to participate (i.e., the value is larger than the outside 
option s); and ii) neither buyer should benefit from the following deviations: stopping experi-
mentation for a very small amount of time and then switching back to the specified equilibrium 
behavior.10

The deviations described in constraint ii) are similar to one-shot deviations in discrete time 
models. Formally, this implies that for any ρ > ρ


S , there exists h̄ such that for all h ≤ h̄,

US(ρ) ≥ Û(ρ;h) =
h∫

t=0

re−rt sdt + ρ
(
1 − e−λH h

)
e−rhUI (ρ)

+ [
1 − ρ

(
1 − e−λH h

)]
e−rhUD(ρ,ρh) (3)

where Û(ρ; h) denotes the value for a deviator that deviates for h length of time. The deviator 
receives a deterministic payoff s within the h length of time. After the deviation, with probability 
ρ(1 − e−λH h), the non-deviator has received lump-sum payoffs and the continuation value for 
the deviator is UI (ρ) = s; with the complementary probability, the non-deviator has not received 
a lump-sum payoff and the two unknown buyers become asymmetric. In the latter situation, 
the deviator receives a continuation value UD(ρ, ρh) where superscript D stands for “devia-

tor.” The non-deviator ρh is more pessimistic than the deviator ρ since ρh = ρe−λH h

ρe−λH h+(1−ρ)
< ρ. 

Obviously, Eq. (3) is a tighter constraint than the participation constraint since UI(ρ) = s and 
UD(ρ, ρh) ≥ s.

9 It is shown in the proof of Proposition 3 that it is impossible to have ρ

I

≤ ρ

S

in equilibrium.
10 Here we consider only the continuous-time analog of one-shot deviation, because it has been proved that the lack of 
profitable one-shot deviations is sufficient to rule out profitable deviations by the definition of admissible strategies (see 
Appendix B.4).
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The most important technical result in this paper is to evaluate limh→0
US(ρ)−Û (ρ;h)

h
. The main 

difficulty is to evaluate the off-equilibrium value function UD(ρ, ρh). We explain here intuitively 
how to derive the off-equilibrium value for a deviating buyer.

First notice that ρ > ρ

S means that it is optimal for the monopolist to sell to both unknown 

buyers on the equilibrium path. Then, for sufficiently small h, it is still optimal for the monopolist 
to sell to both unknown buyers after an h-deviation.

In other words, given a sufficiently small h, there exists some h̄′ such that for all h′ ≤ h̄′, we 
have:

UD(ρ,ρh) = E

h′∫
t=0

re−rt (ρtg − P̃t )dt

+ ρ
(
1 − e−λH h′)

e−rh′
VI (ρh+h′) + ρh

(
1 − e−λH h′)

e−rh′
s

+ [
1 − ρ

(
1 − e−λH h′) − ρh

(
1 − e−λH h′)]

e−rh′
U(ρh′ , ρh+h′). (4)

In the above expression, ρt is the posterior about the deviator’s match quality and starts from ρ; 
and P̃t is the off-equilibrium price set by the monopolist after an h-deviation. Obviously, the 
value function UD(ρ, ρh) depends on the off-equilibrium price and cannot be evaluated directly.

Meanwhile, notice that the non-deviator’s value can be expressed as:

UND(ρ,ρh) = E

h′∫
t=0

re−rt
(
ρ′

t g − P̃t

)
dt

+ ρ
(
1 − e−λH h′)

e−rh′
s + ρh

(
1 − e−λH h′)

e−rh′
VI (ρh′)

+ [
1 − ρ

(
1 − e−λH h′) − ρh

(
1 − e−λH h′)]

e−rh′
U(ρh+h′ , ρh′), (5)

where ρ′
t is the posterior about the non-deviator’s match quality and starts from ρh.

The key step is to decompose UD(ρ, ρh) as:

UD(ρ,ρh) = UND(ρ,ρh) + (
UD(ρ,ρh) − UND(ρ,ρh)

)
.

The reason for doing this decomposition is that the off-equilibrium price is canceled when we 
subtract UND(ρ, ρh) from UD(ρ, ρh). Hence, Z(ρ, ρh) � UD(ρ, ρh) − UND(ρ, ρh) is indepen-
dent of the off-equilibrium price P̃ and can be evaluated directly.

Buyer ρh’s value UND(ρ, ρh) can be computed without using the off-equilibrium price. If 
the non-deviator has not received a lump-sum payoff during an h-deviation, she becomes more 
pessimistic than the deviator. If the monopolist wants to make a sale to both buyers, the opti-
mal price is set according to the reservation value of the more pessimistic buyer. An expression 
of UND(ρ, ρh) can be derived from the ρh buyer’s incentive compatibility constraint. In Ap-
pendix B.2, we show that this implies a first-order ordinary differential equation for UND(ρ, ρh), 
which can be solved by imposing the boundary condition that U(ρh, ρh) = US(ρh).

Second, given any t < h′, notice Eqs. (4) and (5) also hold for posteriors (ρ(t), ρh(t)) where

ρ(t) = ρe−λH t

ρe−λH t + (1 − ρ)
, and ρh(t) = ρhe

−λH t

ρhe−λH t + (1 − ρh)
.

Redefine

Z(t) = Z
(
ρ(t), ρh(t)

) = U
(
ρ(t), ρh(t)

) − U
(
ρh(t), ρ(t)

)
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to be a function of time t . A first-order ordinary differential equation about Z(t) can be ob-
tained by subtracting Eq. (5) from Eq. (4) and letting the length of time interval converge to zero. 
Solving the ordinary differential equation, the expression for Z(ρ, ρh) can be recovered by sub-
stituting time t as functions of ρ(t) and ρh(t). The boundary condition is such that Z = 0 once 
ρh reaches ρ


S .
The details of the derivation can be found in Lemma 1 in Appendix B.2. Moreover, Lemma 2

in Appendix B.3 implies that in equilibrium, a profit-maximizing monopolist should always make 

the incentive constraints to be “binding” in the sense that limh→0
US(ρ)−Û (ρ;h)

h
= 0. Lemma 1 and 

Lemma 2 together give an important characterization of the equilibrium value function US:

Proposition 2. Fix the monopolist’s strategy such that ρ

S is the equilibrium cutoff in phase S. If, 

in equilibrium, both unknown buyers continue to experiment at posterior belief ρ > ρ

S , the value 

US(ρ) satisfies differential equation (6) for ρ ≤ ρ

I , and differential equation (7) for ρ > ρ


I . 
Meanwhile, if the value US(ρ) satisfies the differential equations below, then the unknown buyers 
will keep experimenting in equilibrium.

As shown in Appendix B, differential equation (6) is given by

0 = 2(r + λH ρ)
(
US(ρ) − s

) + λH ρ(1 − ρ)U ′
S(ρ)

+ rλH g

r + λH

(1 − ρ)2ρ

S

1 − ρ

S

(
(1 − ρ)ρ


S

ρ(1 − ρ

S)

)r/λH

− rg

r + λH

λH ρ(1 − ρ); (6)

and differential equation (7) is given by

0 = 2(r + λH ρ)
(
US(ρ) − s

) + λH ρ(1 − ρ)U ′
S(ρ)

+ (r + λH ρ)g(1 − ρ)

(
(1 − ρ)ρ


I

ρ(1 − ρ

I )

)r/λH

− λH gρ(1 − ρ)

− r

[
r + λH + λH ρ


I

(r + λH )(1 − ρ

I )

(
ρ


I

1 − ρ

I

)r/λH

− λH

r + λH

(
ρ


S

1 − ρ

S

)1+r/λH
]

× g(1 − ρ)2
(

1 − ρ

ρ

)r/λH

. (7)

The necessity of Proposition 2 comes from combining Lemma 1 and Lemma 2. In Appendix B.4, 
we prove the sufficiency of this result as well: given the equilibrium value function US(ρ) and 
off-equilibrium value function UD(ρ, ρh), an experimenting buyer does not profit from any de-
viation. The proof proceeds in two steps. First, we show that there are no profitable “one-shot” 
deviations: there exists h̄ > 0 such that it is suboptimal to deviate for h ≤ h̄ length of time both on 
and off equilibrium path. Second, similar to the one-shot deviation principle in discrete time, we 
prove that the non-existence of profitable one-shot deviations is sufficient to rule out profitable 
deviations by the definition of admissible strategies.

Since a learning value is attached to purchasing behavior, the unknown buyer is not behav-
ing myopically. The monopolist must provide an extra subsidy to deter deviations because the 
deviator gains a rent from the possible advantageous belief caused by short-lived deviations: 
US(ρ) > s.

Fig. 1 depicts the buyer’s equilibrium value function US(ρ) as computed from Proposition 2. 
The equilibrium can be divided into two cases. In the “niche” case, ρ
 < ρ ≤ ρ
 and hence 
S I
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Fig. 1. Buyer’s equilibrium value function.

the monopolist only sells to the known buyer after the arrival of the first lump-sum payoff; in 
the “mass” case, ρ > ρ


I and the monopolist sells to both buyers after the arrival of the first 
lump-sum payoff. The buyer’s equilibrium value is strictly higher than the outside option even 
in the niche case, in which the arrival of the first lump-sum brings no rent to the receiver of the 
payoff (VI (ρ) = s). The shape of the value function changes at ρ


I because of the switch from 
the mass case to the niche case. However, the derivative of the value function is checked to be 
continuous at ρ


I .
Denote the equilibrium price in phase S to be PS(ρ). Then, the value for a buyer from pur-

chasing the risky product can be characterized by the following HJB equation:

rUS(ρ) = r
(
ρg − PS(ρ)

) + λH ρ
(
UI (ρ) − US(ρ)

) + λH ρ
(
VI (ρ) − US(ρ)

)
− λH ρ(1 − ρ)U ′

S(ρ) (8)

where UI (ρ) = s; and VI (ρ) is given by Eq. (2).
Meanwhile, by selling the products, the monopolist’s value can be characterized as follows:

rJS(ρ) = 2rPS(ρ) + 2λH ρ
(
JI (ρ) − JS(ρ)

) − λH ρ(1 − ρ)J ′
S(ρ), (9)

where JI (ρ) is given by Proposition 1.
Eqs. (8) and (9) are value functions if both unknown buyers purchase the risky product. The 

RHS of Eq. (8) can be decomposed into four elements: i) the expected payoff rate from purchas-
ing the risky product r(ρg − PS(ρ)); ii) the jump of the value function to VI if a given buyer 
receives a lump-sum payoff; iii) the drop of the value function to UI = s if the other buyer re-
ceives a lump-sum payoff; and iv) the effect of Bayesian updating on the value function when no 
lump-sum is received. Eq. (9) can be interpreted similarly.

The equilibrium price PS(ρ) can be derived by combining Proposition 2 and Eq. (8). By 
Proposition 1, in the niche case, upon the arrival of the first lump-sum payoff, the monopolist 
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immediately shuts down experimentation and charges price g − s. This greatly reduces the un-
known buyers’ incentives to experiment. However, the monopolists will adjust the price such that 
PS(ρ) is still continuous at ρ


I , since the buyer’s equilibrium value is continuously differentiable 
at ρ


I .
We can then substitute the price expression PS(ρ) into Eq. (9) and characterize the equilibrium 

cutoff ρ

S by applying value matching and smooth pasting conditions:

US

(
ρ


S

) = s, JS

(
ρ


S

) = 0, J ′
S

(
ρ


S

) = 0.

Proposition 3 (Characterize the symmetric Markov perfect equilibrium). In phase S, the un-
known buyers purchase the risky product at posterior belief ρ if and only if

ρ > ρ

S = ρe = rs

rg + λH (g − s)
.

ρ

S = ρe implies that the equilibrium stopping rule is efficient in phase S. This result can be 

understood by rewriting ρ

S as

ρ = rs

rg + λH (VI (ρ) + JI (ρ)) − λH s
, (10)

where VI (ρ) and JI (ρ) are the continuation values when one buyer receives a lump-sum payoff. 
Since ρ


S < ρ

I , VI (ρ



S) = s and JI (ρ



S) = g − s. When no buyer has received any lump-sum 

payoff, as there is no temptation to exploit the known buyer, the monopolist fully extracts the 
social surplus of the unknown buyer. Therefore, in equilibrium, experimentation is terminated 
efficiently in phase S.

It is straightforward to check that at ρ

S , the smooth pasting condition for US(·) is also sat-

isfied: U ′
S(ρ


S) = 0. Explicitly, the monopolist is solving an optimal stopping problem given the 
price that she has to charge in order to keep the unknown buyers experimenting. Implicitly, given 
the equilibrium pricing strategy PS(·), the unknown buyers are facing an optimal stopping prob-
lem, as well. At the equilibrium cutoff, the smooth pasting condition for US(·) should also be 
satisfied. This fact is useful when we discuss efficiency for any n ≥ 2 buyers because it enables 
us to characterize the equilibrium cutoff without solving for the value functions.

3.2.3. Equilibrium price path
Fig. 2 depicts different price paths in the symmetric Markov perfect equilibrium depending 

on how many buyers have received lump-sum payoffs. The presence of idiosyncratic uncertainty 
has two important implications for the equilibrium price.

First, in phase S, assume instead that the equilibrium value for each unknown buyer is ex-
actly s. Then the equilibrium price should be:

P̃S(ρ) = ρg − s + λH

r
ρ
(
VI (ρ) − s

)
.

To deter the buyers from taking the outside option, the equilibrium value for each unknown 
buyer must be strictly larger than s. The actual equilibrium price PS(ρ) is strictly less than P̃S(ρ)

because of this deterrence effect. Fig. 3 compares the equilibrium price path with and without 
the deterrence effect. This shows that the price reduction caused by the deterrence effect is quite 
significant. Moreover, the deterrence effect decreases over time and reaches zero when ρ = ρ
 .
S
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Fig. 2. Equilibrium price dynamics.

Fig. 3. Deterrence effect.

Second, there is another positive continuation value effect on the price in phase S. This is 
driven by ex post heterogeneity in phase I. To understand this effect, we compare the equilib-
rium price in phase I, PI (ρ) and the price without the deterrence effect P̃S(ρ). In the mass case 
(ρ > ρ
),
I
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Fig. 4. Instantaneous price response to the first arrival of good news.

P̃S(ρ) − PI (ρ) = λH

r
ρ
(
VI (ρ) − s

)
> 0.

After the arrival of the first lump-sum payoff, the known buyer receives a rent by paying a rel-
atively low price. Thus, in phase S, the monopolist can charge a relatively high price due to the 
extra incentive to experiment as a result of being the first to receive a lump-sum payoff gives 
access to an additional rent in phase I.

The combination of the deterrence effect and the continuation value effect implies that the 
instantaneous price reaction to the arrival of the first lump-sum payoff is ambiguous. In particular, 
when the first lump-sum payoff arrives early, there could be an instantaneous drop in price in 
order to encourage the unknown buyer to experiment as shown by Fig. 2.

Corollary 1. There exists ρ̄ > ρ

I , such that PS(ρ) > PI (ρ) for ρ > ρ̄ and PS(ρ) < PI (ρ) for 

ρ < ρ̄.

The above corollary implies: in the early days of the market, ρ is higher and it is more likely 
to have PS(ρ) > PI (ρ); in the late days of the market, ρ is lower and it is more likely to have 
PS(ρ) < PI (ρ). Fig. 4 describes a situation in which with the same prior, the price might either 
drop or jump depending on when the first lump-sum payoff arrives.

3.3. Efficiency

This section discusses the efficiency property of the symmetric Markov perfect equilibrium 
for an arbitrary number of buyers.

Theorem 1. Consider a market with any n ≥ 2 buyers. The symmetric Markov perfect equilib-
rium is inefficient. Moreover, the equilibrium experimentation terminates too early except when 
no buyer has received a lump-sum payoff.
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The result of Theorem 1 is intuitive. As in Proposition 1, when more than one buyer has re-
ceived a lump-sum payoff, the monopolist faces a trade-off between exploiting those buyers who 
are known to be good, and exploring those buyers who have not yet determined their valuation. 
This trade-off always leads to inefficient early termination of exploration. Moreover, as shown in 
the proof of Theorem 1, the equilibrium cutoff when k buyers are known to be good satisfies

ρ

k = nrs + kr(g − s)

nrg + (n − k)λH (g − s)
,

which is obviously increasing in k: the monopolist is more likely to stop experimentation as 
the temptation to exploit current known buyers increases, and is deceasing in n: the incentive to 
exploration becomes higher as the number of buyers grows.

We are now in a position to summarize the roles played by ex post heterogeneity. First, in 
phase S, ex post heterogeneity means that there is a future benefit for the deviator by becoming 
more optimistic than the non-deviators. The monopolist must provide an extra subsidy to deter 
deviations. Second, in the individual learning phase, ex post heterogeneity implies that the re-
ceivers of lump-sum payoffs are more optimistic than the unknown buyers. If the monopolist 
wishes to serve all buyers, the known buyers extract rents. This continuation value effect has a 
positive impact on the price in phase S: the monopolist can charge a relatively high price due to 
this extra incentive to experiment. The interaction of deterrence and continuation value effects 
leads to an ambiguous instantaneous price reaction to the arrival of the first lump-sum payoff. 
Finally, ex post heterogeneity generates a tradeoff between exploitation and exploration for the 
monopolist. The equilibrium experimentation level is lower than the socially efficient level as we 
have seen in the two-buyer case.11

One important implicit assumption is that the monopolist cannot commit to a certain price 
rule. It is common in the dynamic monopoly pricing literature to assume lack of commitment 
(see, e.g., the literature on the Coase conjecture). With commitment, efficiency can be easily 
restored by using the following “trial” contract. The monopolist offers a contract (p, T ) where 
T is the length of the trial period and p is the lump-sum price charged at the beginning of the 
game. The monopolist commits that by paying p, the consumers can purchase the product for T
length of time for free. After the trial period, the monopolist charges price g − s and the known 
buyers will purchase the product.

By setting T such that the posterior belief at T , ρT , is the same as ρe = rs
rg+λH (g−s)

, the 
monopolist achieves expected profits from each buyer:

π = (
1 − e−rT

)
(ρ0g − s) + ρ0

(
1 − e−λH T

)
e−rT (g − s),

where (1 − e−rT )(ρ0g − s) is the price charged at the beginning of the game to incentivize 
buyers to purchase. After time T , with probability ρ0(1 − e−λH T ), the buyer receives at least one 
lump-sum payoff, and will pay g − s to purchase the product.

Obviously, ρT = ρe implies that experimentation stops efficiently. Meanwhile, the monopolist 
is willing to offer this trial contract because it extracts the full surplus received by the buyers and, 
hence, achieves the highest possible expected profits. One attractive property of this contract is 
that no buyer is incentivized to deviate given that the deviation has no impact on future price.

11 In the Web Appendix, it is shown that if the buyers’ valuations are perfectly correlated instead of independent, there 
is no deterrence or continuation value effect. Furthermore, the equilibrium is always efficient since the monopolist can 
fully internalize the social surplus.
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4. Equilibrium in the bad news case

In the bad news case, the arrival of lump-sum payoffs (referred to as lump-sum damages 
hereafter) would immediately reveal that the risky product is unsuitable for the buyer. Denote 
ξf = A and λH ξl = −B < 0. Condition A − B < s < A is imposed such that the risky product 
is superior to the safe one only when the buyers cannot receive lump-sum damages.12

4.1. Socially efficient allocation

Unlike in the good news case, a large prior ρ0 means that the probability of receiving lump-
sum damages is high and this discourages the buyers from purchasing the risky product. There-
fore, instead of solving an optimal stopping problem (i.e., terminating experimentation when 
belief reaches a certain cutoff), in the bad news case, we solve an optimal starting problem, i.e., 
beginning experimentation when belief is lower than a certain cutoff.

As in the good news case, we discuss socially efficient allocation when k out of n buyers have 
received lump-sum damages. The social surplus function could be written as (known buyers will 
take the outside option and are guaranteed to receive s)

Ωk(ρ) = ks + (n − k)W(ρ)

where

W(ρ) = sup
{αt }t∈R+∈Γ

E

∞∫
t=0

re−rt
[
αt (A − ρtB) + (1 − αt )s

]
dt

defines the optimal control problem for the unknown buyer. Γ again denotes the set of sequences 
{αt }t∈R+ satisfying αt ∈ {0, 1} for all t ∈ R+, and αt being right continuous in t . The correspond-
ing HJB equation is

W(ρ) = max

{
s,A − ρB + 1

r

[
λH ρ

(
s − W(ρ)

) − λH ρ(1 − ρ)W ′(ρ)
]}

. (11)

Solve the optimal starting problem defined by Eq. (11) and we obtain the following result: if 
k ≥ 0 buyers are known to receive lump-sum damages, it is socially efficient for those buyers to 
always purchase the safe product. For the remaining n −k unknown buyers, it is socially efficient 
to start experimentation if and only if13

ρ ≤ ρe = (r + λH )(A − s)

λH A + rB − λH s
.

12 This way of modeling the bad news case is similar to the models in [1] and [10].
13 The solution to the differential equation

W(ρ) = A − ρB + 1

r

[
λH ρ

(
s − W(ρ)

) − λH ρ(1 − ρ)W ′(ρ)
]

is

W(ρ) = A − λH (A − s) + rB

r + λH
ρ + C(1 − ρ)

(
1 − ρ

ρ

)r/λH

.

C must be zero since ρ = 0 is included in the domain. ρe can be directly solved from W(ρ) = s.
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4.2. Equilibrium

In any symmetric equilibrium, buyers can be divided into two groups: known buyers and 
unknown buyers. Let α0

k (α1
k ) be the strategy for the known (unknown) buyers, in which subscript 

k indicates the number of buyers who have received lump-sum damages. Let Vk, Uk and Jk be 
value functions for the known buyers, the unknown buyers and the monopolist, respectively, 
when k buyers have received lump-sum damages. Finally, let Pk denote the price charged by the 
monopolist. Definition 1 implies that the triple of (Pk, α0

k , α
1
k ) is a symmetric Markov perfect 

equilibrium if:

• α0
k = 1 if P ≤ A − B − s and = 0 otherwise;

• for any k < n, given Pk , the unknown buyers choose acceptance policy α1
k to maximize:

Uk(ρ) = sup
α1

k

E

τ∫
t=0

re−rt
[
α1

k

(
A − ρtB − Pk(ρt )

) + (
1 − α1

k

)
s
]
dt

+ e−rτ

(
1

n − k
Vk+1(ρτ ) + n − k − 1

n − k
Uk+1(ρτ )

)

where τ is the first (possibly infinite) time at which a new unknown buyer receives bad news;
• given (α0

k , α
1
k ), the monopolist chooses price Pk(ρt ) to maximize

Jk(ρ) = sup
Pk

E

{ τ∫
t=0

re−rt
[
kα0

k

(
ρt ,Pk(ρt )

) + (n − k)α1
k

(
ρt ,Pk(ρt )

)]
Pk(ρt )dt

+ e−rτ Jk+1(ρτ )

}

• beliefs update according to Bayes’ rule: ρt satisfies the law of motion, i.e., Eq. (1);
• for k = n, the monopolist will not serve any buyer such that Jn = 0 and Vn = s.

First, a profit-maximizing monopolist should never set the price lower than A − B − s < 0
in order to sell to the known buyers. This implies that Vk is always s. Second, when n − k

unknown buyers purchase the risky product, the conditional probability that any given unknown 
buyer receives lump-sum damages is simply 1/(n − k), since the n − k unknown buyers’ payoff 
distributions are identical. Finally, once the monopolist starts to sell to the unknown buyers, she 
will continue to sell as long as no lump-sum damage is received.

In a symmetric Markov perfect equilibrium, when experimentation takes place on the equi-
librium path, the price is set such that both the participation constraint and the no profitable 
deviation constraint are satisfied. In the bad news case, the deviations do not impose more re-
strictions than the participation constraint, because the most pessimistic unknown buyer’s value 
is always s in equilibrium. This is different from the good news case. In the good news case, a 
one-shot deviation makes the non-deviators more pessimistic if they have not received any lump-
sum payoffs during the deviation period. In that situation, the price charged by the monopolist 
is lower than the price the deviator is willing to pay. However, in the bad news case, a deviation 
makes the deviator more pessimistic. After the deviation, if the monopolist wishes to serve all 
unknown buyers, the optimal price is determined by the price the deviator is willing to pay; if 
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the monopolist does not wish to serve all unknown buyers, the deviator is the first buyer to be 
excluded. In both cases, the deviator cannot gain more than the outside option after a deviation. 
Therefore, setting the equilibrium value to be s is adequate to deter deviations.

Given the equilibrium value for each unknown buyer is always s (since they are equally 
pessimistic), the equilibrium price can easily be derived: the monopolist will always charge 
PI (ρ) = A − ρB − s no matter how many buyers have received lump-sum payoffs. By solv-
ing the monopolist’s optimal starting problem, we obtain the following theorem:

Theorem 2. Consider a market with n ≥ 2 buyers. The symmetric Markov perfect equilibrium is 
always efficient.

The above theorem is intuitive: the equilibrium is always efficient as the monopolist is able 
to extract the full surplus. The comparison of the good news and the bad news cases highlights 
the important role played by ex post heterogeneity. Indeed, in the bad news case, buyers can also 
become ex post heterogeneous by taking different actions or achieving different outcomes. As 
explained earlier, the deterrence effect does not exist, because taking the outside option puts the 
deviator in a disadvantageous position. Moreover, there is no tradeoff between exploitation and 
exploration because the buyers who have received lump-sum damages will never purchase the 
risky product. This rules out the continuation value effect as well. As a result, although buyers 
become ex post heterogeneous, the potential buyers of the risky product are always the unknown 
ones, who are ex post homogeneous in a symmetric equilibrium. Hence, the equilibrium is always 
efficient.

5. Conclusion

This paper considers a dynamic monopoly pricing environment in which the monopolist can-
not price-discriminate among the buyers. Individual learning generates ex post heterogeneity 
both from different actions and different outcomes. If the monopolist wishes to sell to several 
buyers, the optimal price is set to make the most pessimistic buyer indifferent between the al-
ternatives. In the good news case, this has significant implications both on the equilibrium path 
and off the equilibrium path. On the equilibrium path, the receivers of lump-sum payoffs become 
more optimistic than the non-receivers. This implies: i) the arrival of the first good news signal 
reduces the continuation value for the unknown buyers, and this effect might lead to an instan-
taneous drop in price; and ii) the monopolist faces different buyers after the arrival of lump-sum 
payoffs and the absence of price discrimination leads to an inefficient termination of experimen-
tation.

There is another subtle off-equilibrium implication. By taking short-lived deviations (switch-
ing to the safe option for an instant), each buyer can extract a rent if she becomes more optimistic 
than other buyers after the deviation. This generates a future benefit from deviation. If the mo-
nopolist wishes to make a sale to several unknown buyers, she must provide an extra subsidy 
to deter deviations. This paper establishes a way to analyze off-equilibrium behavior when the 
buyers are asymmetric after a deviation. This analysis allows us to explicitly derive the deviator’s 
value function and the equilibrium price path. It is shown that such a deterrence effect leads to a 
significant reduction in the equilibrium price.

However, in the bad news case, the above implications do not exist. This can be explained 
by two facts. First, on the equilibrium path, the receivers of lump-sum damages immediately 
take the outside option and the buyers who stay in the experience good market are still ex post 
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homogeneous. Second, off the equilibrium path, a buyer cannot benefit from deviations because 
the deviator becomes more pessimistic.

In the Web Appendix, we consider the correlated case by introducing another dimension of 
uncertainty on product quality. A lump-sum payoff can occur only when both the product quality 
is high and the match quality is relevant. The analysis of the correlated case is more complicated 
since there is one more state variable: the belief about the product characteristic. As the belief 
about the product characteristic can be expressed as a function of the belief about individual 
match quality, we can apply similar techniques to analyze the problem. It is shown that adding 
this common uncertainty does not change the main results as long as idiosyncratic uncertainty 
still exists.

There are several extensions to consider in the future. For tractability, we have assumed that 
the arrival of lump-sum payoffs immediately resolves the idiosyncratic uncertainty of the re-
ceiver. We could consider a model where the arrival of lump-sum payoffs cannot immediately 
resolve the idiosyncratic uncertainty of the receiver as in [22]. As long as ex post heterogeneity 
exists, the resulting equilibrium would be inefficient as well.

Another natural extension of the current model is to consider a dynamic duopoly pricing 
environment. This issue is partially investigated by [6], who consider a model with a continuum 
of buyers such that buyers choose according to their myopic preferences at each instant. It would 
be interesting to consider a model with a finite number of buyers such that each buyer’s choice 
has non-trivial effects on learning and future prices.

Appendix A. Admissible strategies

Before formally defining admissible Markovian strategies, we define admissibility for general 
strategies. First denote an outcome h to be

h�
({ait ,Nit }ni=1,Pt

)
0≤t<∞;

and H is the set of all possible outcomes. A sub-outcome h− ⊂ h only includes information 
about purchasing decisions and lump-sum payoffs:

h− �
({ait ,Nit }ni=1

)
0≤t<∞;

and H− is the set of all possible sub-outcomes.
In general, a strategy can be viewed as a map from the set of outcomes to actions. We focus on 

strategies that are independent of previous prices; this is because allowing pricing as a function of 
previous prices may generate more complicated problems.14 The monopolist’s pricing decision 
is given by the mapping:

P : H− × [0,∞) →R;
and the buyers’ acceptance decision is given by the mapping:

αi : H × [0,∞) → {0,1}.
P (h−, t) is the price charged by the monopolist at time t ; and αi(h, t) is the purchasing decision 
made by buyer i at time t . Assumptions A1 and A2 stated below guarantee that the strategies are 
well defined.

14 For example, any decreasing price path is consistent with the pricing function P(h, t) = infτ<t Pτ .
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Denote vector a = (a1, · · · , an) and vector N = (N1, · · · , Nn). A metric on the sets of out-
comes is defined as:

D−(
ĥ−

t , h̃−
t

) =
t∫

0

[
d(âτ , ãτ ) + d(N̂τ , Ñτ )

]
dτ

and

D(ĥt , h̃t ) =
t∫

0

[
d(âτ , ãτ ) + d(N̂τ , Ñτ )

]
dτ + |P̂t − P̃t |

where d is the Euclidean norm. In particular, the previous prices do not enter in the definition of 
D(ĥt , h̃t ); only the current price matters. The metric D (D−) determines a Borel σ -algebra BH

(BH− ). The first restriction on strategies is that:

A1. P is a BH− ×B[0,∞) measurable function and αi is a BH ×B[0,∞) measurable function.

The second restriction requires that the strategies take the same actions if two histories are 
almost the same:

A2. For all t , and ĥ, h̃ ∈ H such that D(ĥt , h̃t ) = 0, then P(ĥ−, t) = P(h̃−, t) and αi(ĥ, t) =
αi(h̃, t).

A1 and A2 are two natural restrictions on strategies. Additional conditions must be imposed 
to guarantee that the induced outcome is unique. Before doing that, we define an outcome h to be 
compatible with a given strategy profile {P, α} if h satisfies: P(h−, t) = Pt and αi(h, t) = ait . 
A straightforward modification of the argument in [8] shows the following:

Proposition 4. A strategy profile (P, α) generates a unique distribution over compatible out-
comes if it satisfies:

1. for any outcomes ĥ and h̃ and any time t such that D(ĥt , h̃t ) = 0 and N̂t = Ñt ,

lim
ε↘0

P(ĥ, t + ε) = lim
ε↘0

P(h̃, t + ε);

and
2. for any ĥ and h̃ and any t such that D(ĥt , h̃t ) = 0, N̂t = Ñt and limε↘0 P̂t+ε = limε↘0 P̃t+ε , 

then there exists ε > 0 and a ∈ {0, 1} such that αi(ĥ, ̃t) = αi(h̃, ̃t) = a for any t̃ ∈ (t, t + ε).

We say a strategy profile (P, α) is weakly admissible if it satisfies conditions 1 and 2 in 
Proposition 4. In Proposition 4, condition 2 is the key condition. This condition is slightly differ-
ent from the inertia condition proposed in [8]. The modification is needed to handle the possible 
situation in which the arrival of a lump-sum payoff at time t results in the purchasing decisions 
at not being right continuous in time.

Any Markovian strategy profile (P, α) which induces a weakly admissible strategy profile 
generates a unique distribution over compatible outcomes. However, the notion of weak admis-
sibility does not guarantee that the induced outcome allows us to use Eq. (1) to update beliefs.
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Definition 2. A Markovian strategy profile (P, α) is strongly admissible in the good news case 
if it satisfies15:

1. P(ρ) is left continuous and non-decreasing when it is continuous: for each ρ∈ Σ and δ > 0, 
there exists some ε > 0 s.t. P(ρ′) ≤ P(ρ) and |P(ρ′) − P(ρ)| ≤ δ for all feasible ρ′ ≤ ρ

such that ‖ρ′ − ρ‖ ≤ ε16;
2. αi(ρ, P) is left continuous: for each ρ ∈ Σ and δ > 0, there exists some ε′ > 0 s.t. 

αi(ρ
′, P ′) = αi(ρ, P) for all feasible (ρ′, P ′) ≤ (ρ, P) such that ‖(ρ′, P ′) − (ρ, P)‖ ≤ ε′; 

and
3. if h is a history compatible with (P, α), C(t; h) < ∞ for t < ∞, where C(t; h) denotes the 

number of times τ before t such that purchasing behavior aτ is discontinuous.

It is straightforward to check that conditions 1 and 2 in Definition 2 are sufficient to guarantee 
that (P, α) induces a weakly admissible strategy profile. In addition, these two conditions imply 
that any outcome induced by the Markovian strategy profile (P, α) is well behaved in the sense 
that the purchasing decisions ait and pricing decisions Pt are right continuous functions when 
there is no arrival of lump-sum payoffs. This enables us to use Eq. (1) to update beliefs. In the 
good news case, condition 1 implies Pt is decreasing when it is continuous but we also allow 
jumps in the price path. Condition 3 requires that each buyer can change actions no more than a 
finite number of times in a finite time interval, since condition 2 does not preclude the possibility 
of an infinite number of changes on any time interval. This additional condition is needed to 
simplify the analysis of the equilibrium.

Definition 2 is too strong in the sense that even cutoff strategies may not be strongly ad-
missible.17 We use the completion argument in [8] to overcome this issue. First define a metric 
on the space of strongly admissible strategies. A Markovian strategy profile (P, α) is admis-
sible if there exists strongly admissible Markovian strategy profiles {(Pk, αk)}∞k=1 such that 
limk→∞(Pk, αk) = (P, α). An outcome h is consistent with an admissible strategy profile 
(P, α) if there exists strongly admissible Markovian strategy profiles {(Pk, αk)}∞k=1 and out-
comes {hk}∞k=1 satisfying the following three conditions: i) for each k, hk is compatible with 
(Pk, αk), ii) limk→∞(Pk, αk) = (P, α) and iii) limk→∞ hk = h. An admissible Markovian strat-
egy profile (P, α) may not generate a unique distribution over compatible outcomes. However, 
the proof of Theorem 2 in [8] applies here, as well, to show that each admissible Markovian 
strategy profile (P, α) is identified with a unique distribution over consistent outcomes. When 
referring to outcomes generated by an admissible Markovian strategy profile (P, α), we restrict 
attention to the consistent outcomes.

In our definition of Markov perfect equilibrium, we allow the deviating strategies to be non-
Markovian. Additional conditions on the non-Markovian strategies are also needed to make sure 
that the induced outcome will be well behaved even off the equilibrium path. The conditions 
imposed are counterparts of conditions 1–3 in Definition 2.

15 For the bad news case, condition 1 should be changed to require that P is piecewise non-increasing.
16 We write (x1, · · · , xn) ≤ (y1, · · · , yn) if xi ≤ yi for i = 1, · · · , n, and ‖ · ‖ is the Euclidean norm.
17 For example, consider a cutoff strategy such that the cutoff price for buyer i is strictly increasing in beliefs and buyer 
i takes the risky product at the cutoff price. This strategy violates the condition that αi is left continuous in beliefs.
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Definition 3. Define time t as a regular time for outcome h if there is no arrival of lump-sum 
payoffs at time t . A weakly admissible strategy profile (P, α) is strongly admissible in the good 
news case if it satisfies:

1. P is right continuous and non-increasing when continuous at any regular time: for any out-
comes h and any regular time t ,

lim
ε↘0

P(h, t + ε) = P(h, t);

and there exists ε̄1 > 0 such that P(h, t + ε) ≤ P(h, t) for all ε ≤ ε̄1;
2. for any h and any regular t such that Pt is right continuous and non-increasing at time t , 

there exists ε̄2 > 0 and a ∈ {0, 1} such that αi(h, ̃t) = αi(h, t) for any t̃ ∈ (t, t + ε̄2); and
3. if h is a history compatible with (P, α), C(t; h) < ∞ for t < ∞.

A non-Markovian strategy profile (P, α) is admissible if there exists strongly admissible non-
Markovian strategy profiles {(Pk, αk)}∞k=1 such that limk→∞(Pk, αk) = (P, α). For an admissible 
non-Markovian strategy profile (P, α), we also restrict attention to those consistent outcomes that 
can be similarly defined.

Appendix B. Proofs of results

B.1. Proof of Proposition 1

Proof. In phase I, denote ρ to be the common posterior belief about the unknown buyer’s id-
iosyncratic uncertainty. Denote PI (ρ) as the price set by the monopolist for ρ > ρ


I , where ρ

I is 

the equilibrium cutoff. Then, the value function for the unknown buyer satisfies

rUI (ρ) = r
(
gρ − PI (ρ)

) + ρλH

(
s − UI (ρ)

) − λH ρ(1 − ρ)U ′
I (ρ).

Certainly, a profit-maximizing monopolist always sets prices PI (ρ) = gρ − s such that 
UI (ρ) = s. The monopolist’s problem is to choose between charging a low price gρ − s in order 
to keep experimenting and charging a high price g − s to extract the full surplus from the known 
buyer. Obviously, this is an optimal stopping problem with HJB equation

rJI (ρ) = max
{
r(g − s),2r(gρ − s) + ρλH

(
2(g − s) − JI (ρ)

) − λH ρ(1 − ρ)J ′
I (ρ)

}
.

(12)

On the RHS of Eq. (12), g − s is the value if the monopolist only sells to the good buyer 
by charging g − s; if the monopolist decides to continue experimentation, she not only receives 
instantaneous revenue 2(gρ − s) by selling to both buyers, but may also receive a future value of 
2(g − s) if the unknown buyer receives a lump-sum payoff. From the value matching and smooth 
pasting conditions, it is straightforward to characterize the equilibrium cutoff as

ρ

I = r(g + s)

2rg + λH (g − s)
.

The equilibrium value function JI (ρ) could be solved as:

JI (ρ) =
{

2(gρ − s) + (g + s − 2gρ

I )

1−ρ
1−ρ


I
[ (1−ρ)ρ


I

(1−ρ

I )ρ

]r/λH if ρ > ρ

I

g − s otherwise.



286 X. Weng / Journal of Economic Theory 155 (2015) 262–299
The known buyer only needs to pay PI (ρ) = gρ − s < g − s before ρ reaches ρ

I , but has to 

pay g − s afterwards. The value function for this buyer is given by differential equation

rVI (ρ) = r
(
g(1 − ρ) + s

) + ρλH

(
s − VI (ρ)

) − λH ρ(1 − ρ)V ′
I (ρ) (13)

for ρ > ρ

I = r(g+s)

2rg+λH (g−s)
and VI (ρ) = s for ρ ≤ ρ


I = r(g+s)
2rg+λH (g−s)

. Eq. (13) is an ordinary 
differential equation with boundary condition: VI (ρ



I ) = s. This gives us the expression of VI (ρ)

in the proposition. �
B.2. Characterize limh→0

US(ρ)−Û (ρ;h)
h

Lemma 1. Fix prior ρ0 and let ρ

S be the equilibrium cutoff in phase S. For ρ


S < ρ ≤ ρ

I ,

lim
h→0

US(ρ) − Û (ρ;h)

h
= 2(r + λH ρ)

(
US(ρ) − s

) + λH ρ(1 − ρ)U ′
S(ρ)

− rg

r + λH

λH ρ(1 − ρ)

+ rλH g

r + λH

ρ

S(1 − ρ)2

1 − ρ

S

(
(1 − ρ)ρ


S

ρ(1 − ρ

S)

)r/λH

; (14)

and for ρ > ρ

I ,

lim
h→0

US(ρ) − Û (ρ;h)

h
= 2(r + λH ρ)

(
US(ρ) − s

) + λH ρ(1 − ρ)U ′
S(ρ)

+ (r + λH ρ)g(1 − ρ)

(
(1 − ρ)ρ


I

ρ(1 − ρ

I )

)r/λH

− λH gρ(1 − ρ)

− r

[
r + λH + λH ρ


I

(r + λH )(1 − ρ

I )

(
ρ


I

1 − ρ

I

)r/λH

− λH

r + λH

(
ρ


S

1 − ρ

S

)1+r/λH
]
g(1 − ρ)2

(
1 − ρ

ρ

)r/λH

. (15)

Proof. First notice that if limh→0
US(ρ)−UD(ρ,ρh)

h
exists, limh→0

US(ρ)−Û (ρ;h)
h

can be written as:

lim
h→0

US(ρ) − Û (ρ;h)

h
= (r + λH ρ)

(
US(ρ) − s

) + lim
h→0

US(ρ) − UD(ρ,ρh)

h
. (16)

The main issue is to evaluate UD(ρ, ρh) for ρ > ρh. We proceed in the following three steps: first, 
we decompose UD as the sum of the non-deviator’s value UND and the difference Z = UD −
UND; second, we derive an ordinary differential equation about UND, and explicitly solve it; 
finally, we derive an ordinary differential equation about Z with respect to time t , and explicitly 
solve it.
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1. Decompose off-equilibrium value function.
Fix h > 0 to be sufficiently small and the monopolist will still sell to both buyers after an 
h-deviation.18 Therefore, there exists h̄′ such that for all h′ ≤ h̄′, we have:

UD(ρ,ρh) = E

h′∫
t=0

re−rt (ρtg − P̃t )dt

+ ρ
(
1 − e−λH h′)

e−rh′
VI (ρh+h′) + ρh

(
1 − e−λH h′)

e−rh′
s

+ [
1 − ρ

(
1 − e−λH h′) − ρh

(
1 − e−λH h′)]

e−rh′
U(ρh′ , ρh+h′). (17)

In the above expression, ρt is the posterior about the deviator’s match quality, and starts 
from ρ; and P̃t is the off-equilibrium price set by the monopolist after an h-deviation.
By purchasing the risky product, the non-deviator gets value

UND(ρ,ρh) = E

h′∫
t=0

re−rt
(
ρ′

t g − P̃t

)
dt

+ ρ
(
1 − e−λH h′)

e−rh′
s + ρh

(
1 − e−λH h′)

e−rh′
VI (ρh′)

+ [
1 − ρ

(
1 − e−λH h′) − ρh

(
1 − e−λH h′)]

e−rh′
U(ρh+h′ , ρh′), (18)

where ρ′
t is the posterior about the non-deviator’s match quality, and starts from ρh.

Obviously, the off-equilibrium value function UD(ρ, ρh) can be decomposed as

UD(ρ,ρh) = UND(ρ,ρh) + Z(ρ,ρh)

where Z(ρ, ρh) = UD(ρ, ρh) − UND(ρ, ρh).
The fact that the ρh buyer purchases the risky product means that it is not profitable for her 
to have “one-shot” deviations:

UND(ρ,ρh) ≥ Ũ
(
h′) =

h′∫
t=0

re−rt sdt + ρ
(
1 − e−λH h′)

e−rh′
s

+ [
1 − ρ

(
1 − e−λH h′)]

e−rh′
U(ρh,ρh′). (19)

Since the ρh buyer is more pessimistic about the probability of receiving lump-sum payoffs, 
the optimal off-equilibrium price P̃ is set such that the ρh buyer has incentives to experiment.
Denote Ũ(ρ; ρh) as UND(ρ, ρh) for a fixed ρh since ρh does not change in the expression of 
Ũ (h′). The fact that

lim
h′→0

UND(ρ,ρh) − Ũ (h′)
h′ = (r + λH ρ)Ũ(ρ;ρh) − (r + λH ρ)s

+ λH ρ(1 − ρ)Ũ ′(ρ;ρh)

18 If the monopolist only sells to the deviator, the loss from not selling to the non-deviator is proportional to the equi-
librium value JS(ρh) > 0, but the gain is proportional to ρ − ρh . As h goes to zero, the loss always dominates the 
gain.
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is left-continuous in ρ and ρh implies that in equilibrium, the following equation is satis-
fied19:

lim
h′→0

UND(ρ,ρh) − Ũ (h′)
h′ = 0.

Thus we derive an ordinary differential equation for Ũ(ρ; ρh)

(r + λH ρ)Ũ(ρ;ρh) = (r + λH ρ)s − λH ρ(1 − ρ)Ũ ′(ρ;ρh). (20)

The off-equilibrium value function UD(ρ, ρh) can be further decomposed as:

UD(ρ,ρh) = Ũ (ρ;ρh) + Z(ρ,ρh).

2. Solve for the off-equilibrium value function Ũ(ρ;ρh).
Eq. (20) is an ordinary differential equation with general solution:

Ũ(ρ;ρh) = s + Ch × (1 − ρ)

(
1 − ρ

ρ

)r/λH

.

When ρ = ρh, the two buyers are identical and it returns to the equilibrium path: 
Ũ (ρh; ρh) = US(ρh). This boundary condition implies:

Ch = US(ρh) − s

(1 − ρh)(
1−ρh

ρh
)r/λH

. (21)

Since on the equilibrium path, experimentation stops at ρ

S , the unknown buyer receives a 

value less than the outside value (US(ρ) < s) for ρ < ρ

S . Eq. (21) implies that the posterior 

ρh will never be lower than ρ

S no matter how large h is. In other words, the monopolist 

always stops selling to both buyers if (ρ, ρh) = (f (ρ

S; h), ρ


S), where

f
(
ρ


S;h) = ρ

S

ρ

S + e−λH h(1 − ρ


S)

corresponds to the posterior about the deviator’s match quality when the posterior ρh drops 
to ρ


S .
3. Solve for the off-equilibrium value function Z(ρ,ρh).

Denote

Z(t) = Z
(
ρ(t), ρh(t)

) = U
(
ρ(t), ρh(t)

) − U
(
ρh(t), ρ(t)

)
where ρ(t) is the posterior about the deviator’s match quality after t length of time beginning 
from ρ and ρh (given that no lump-sum payoff is received during this period). Similarly, 
ρh(t) is the posterior about the non-deviator’s match quality. The posteriors can be expressed 
as:

ρ(t) = ρe−λH t

ρe−λH t + (1 − ρ)
, ρh(t) = ρhe

−λH t

ρhe−λH t + (1 − ρh)
.

19 The proof is similar to the proof of Lemma 2. If it is strictly larger than zero, we can find a neighborhood of beliefs 
to increase price P̃ (ρ, ρh) but the buyers will still purchase the risky product. This constitutes a profitable deviation for 
the monopolist.
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Given any t < h′, the monopolist will sell to both buyers ρ(t) and ρh(t). Subtract Eq. (18)
from (17) yields:

Z(t) = E

h′′∫
0

re−rτ
(
ρτg − ρ′

τ g
)
dτ

+e−rh′′(
1 − e−λH h′′){

ρ(t)
[
VI

(
ρh

(
t + h′′)) − s

] + ρh(t)
[
s − VI

(
ρ
(
t + h′′))]}

+ e−rh′′[
1 − ρ(t)

(
1 − e−λH h′′) − ρh(t)

(
1 − e−λH h′′)]

Z
(
t + h′′). (22)

Let h′′ go to 0 and we get an ordinary differential equation about Z(t):(
r + λH ρ(t) + λH ρh(t)

)
Z(t) − Ż(t) = H(t) (23)

where

H(t) = r
(
ρ(t) − ρh(t)

)
g + λH ρ(t)

(
VI

(
ρh(t)

) − s
) − λH ρh(t)

(
VI

(
ρ(t)

) − s
)
.

The value function Z can be derived by a backward procedure.
First, if both ρ(t) and ρh(t) are smaller than ρ


I , then both VI (ρ(t)) and VI (ρh(t)) are s and 
H(t) = r(ρ(t) − ρh(t))g. It is straightforward to solve differential equation (23):

Z(t) = rg

r + λH

(
ρ(t) − ρh(t)

) + Cert
(
1 − ρ(t)

)(
1 − ρh(t)

)
. (24)

Repeating the above procedure yields

Z3(ρ,ρh) = rg

r + λH

(ρ − ρh)

+ Dh3(1 − ρ)(1 − ρh)

[(
1 − ρh

ρh

)r/λH

−
(

1 − ρ

ρ

)r/λH
]
, (25)

where

Dh3 = − rg

r + λH

eλH h − 1

1 − e−rh

(
ρ


S

1 − ρ

S

)1+r/λH

.

Second, if ρ(t) > ρ

I and ρh(t) ≤ ρ


I , then

H(t) = r
(
ρ(t) − ρh(t)

)
g − λH ρh(t)g

(
1 − ρ(t)

)(
1 −

[
(1 − ρ(t))ρ


I

ρ(t)(1 − ρ

I )

]r/λH
)

.

Similarly, we solve Z as:

Z2(ρ,ρh) = rg

r + λH

(ρ − ρh) − λH g

r + λH

ρh(1 − ρ) + ρh(1 − ρ)g

[
(1 − ρ)ρ


I

ρ(1 − ρ

I )

]r/λH

+ Dh2(1 − ρ)(1 − ρh)

(
1 − ρ

ρ

)r/λH

. (26)

Dh2 is determined such that Z2 and Z3 coincide when ρ = ρ

I . This gives us

Dh2 = − rg

r + λ

[(
e(r+λH )h − erh

)( ρ

S

1 − ρ


)1+r/λH

+ e−λH h

(
ρ


I

1 − ρ


)1+r/λH
]
.

H S I
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Finally, if both ρ(t) and ρh(t) are larger than ρ

I , then we have already solved

Z1(ρ,ρh) = (ρ − ρh)g −
[
(1 − ρh)

(
1 − ρh

ρh

)r/λH

− (1 − ρ)

(
1 − ρ

ρ

)r/λH
]

× g

(
ρ


I

1 − ρ

I

)r/λH

+ Dh1(1 − ρ)(1 − ρh)

[(
1 − ρh

ρh

)r/λH

−
(

1 − ρ

ρ

)r/λH
]
. (27)

Dh1 is determined such that Z1 and Z2 coincide when ρh = ρ

I :

Dh1 =
[

1

ρ

I

+ (r + λH )e−rh − λH − re−(r+λH )h

(r + λH )(1 − e−rh)

+ r(eλH h − 1)

(r + λH )(1 − e−rh)

](
ρ


I

1 − ρ

I

)1+r/λH

+ Dh3.

After solving for UD(ρ, ρh), limh→0
US(ρ)−UD(ρ,ρh)

h
can be evaluated directly. Substitute the 

results into Eq. (16) and we get the equations stated in Lemma 1. �
B.3. “Binding” incentive constraint

Lemma 2. Fix a prior ρ0 such that ρ

S is the equilibrium cutoff in phase S. For ρ > ρ


S , any best 
response by the monopolist entails:

lim
h→0

US(ρ) − Û (ρ;h)

h
= 0.

Proof. First, it is obvious that

lim
h→0

US(ρ) − Û (ρ;h)

h
≥ 0

since US(ρ) ≥ Û (ρ; h) for h ≤ h̄. Suppose by contradiction that there exists ρ1 such that

F(ρ1) � lim
h→0

US(ρ1) − Û (ρ1;h)

h
= c > 0.

From Lemma 1, F(ρ) is left continuous in ρ, which implies that if F(ρ1) = c > 0, then there 
exists h† and ε1 such that for all h < h† and ρ1 − ε1 < ρ′ < ρ1:

US

(
ρ′) − Û

(
ρ′;h)

> hc/2.

Choose ε2 to satisfy

ρ1 − ε2 = ρ1e
−λH h†

ρ1e−λH h† + (1 − ρ1)

and define ε̂ = min{ε1, ε2}. Now define a new pricing strategy such that

P̃S(ρ) =
{

PS(ρ) + c
2 if ρ1 − ε̂ < ρ ≤ ρ1

P (ρ) otherwise.
S
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Obviously, under this new pricing strategy, the unknown buyer will still purchase the risky prod-
uct since

US

(
ρ′) − Û

(
ρ′;h)

> hc/2.

However, the monopolist obtains a higher profit and, hence, this constitutes a profitable deviation 
for the monopolist. Therefore, it is impossible to have

lim
h→0

US(ρ) − Û (ρ;h)

h
> 0

in equilibrium. �
B.4. Proof of Proposition 2

Proof. The necessity part directly comes from Lemma 1 and Lemma 2. To prove the sufficiency 
part, we proceed in two steps. First, Lemma 3 and Lemma 4 show that there do not exist profitable 
continuous time analogs of one-shot deviations both on and off the equilibrium path. Second, 
using the definition of admissible strategy, we prove the continuous time analog of the one-shot 
deviation principle: the non-existence of profitable one-shot deviations is sufficient to guarantee 
that any admissible deviation is unprofitable.

Lemma 3. The value functions derived are sufficient to deter one-shot deviations: there exists 
h̄ > 0 such that it is not profitable for an experimenting buyer to deviate for any h ≤ h̄ length of 
time.

Proof. After a buyer deviates h length of time, the monopolist can either make a sale to both 
buyers or sell only to the deviator. If the latter is the continuation play, UD(ρ, ρh) = s since the 
optimal price only needs to satisfy the deviator’s participation constraint. Since US(ρ) > s, it is 
immediately clear that it is not profitable to deviate. Therefore, an interesting case occurs when 
the monopolist makes a sale to both buyers after an h-deviation. We must consider the following 
two sub-cases.
Case 1. ρ ≤ ρ


I . In this case, it is straightforward to show

Û (ρ;h) − s =
[

rλH e−(2r+λH )h

(2r + λH )(r + λH )
+ re−rh(1 − e−λH h)

r + λH

]
gρ(1 − ρ)

− [e−rhλH + r(eλH h − 1)]g
r + λH

(1 − ρ)2ρ

S

1 − ρ

S

[
(1 − ρ)ρ


S

ρ(1 − ρ

S)

]r/λH

+ D(1 − ρ)2
(

1 − ρ

ρ

)2r/λH

and

US(ρ) − s = rλH

(2r + λH )(r + λH )
gρ(1 − ρ) − λH g

r + λH

(1 − ρ)2ρ

S

1 − ρ

S

[
(1 − ρ)ρ


S

ρ(1 − ρ

S)

]r/λH

+ D(1 − ρ)2
(

1 − ρ

ρ

)2r/λH

.

In order to show Û(ρ; h) ≤ U(ρ), it suffices to prove for all h ≥ 0, both



292 X. Weng / Journal of Economic Theory 155 (2015) 262–299
S(h) � λH (1 − e−(2r+λH )h)

2r + λH

− e−rh
(
1 − e−λH h

)
and

T (h) �
(

eλH h − 1 − λH (1 − e−rh)

r

)

are larger than zero. Notice S(0) = 0, S′(0) = 0 and S′′(h) > 0. Therefore, S(h) is a convex 
function which achieves its minimum at h = 0. As a result, S(h) ≥ 0 for all h ≥ 0. Similarly, 
it can be shown that T (0) = 0, T ′(0) = 0 and T ′′(h) > 0. Therefore, T (h) ≥ 0 as well. Hence, 
there is no profitable one-shot deviation for h > 0.
Case 2. ρ > ρ


I . In this case, ρh > ρ

I for sufficiently small h, and we have:

US(ρ) − Û (ρ;h) =
[

λH (1 − e−(2r+λH )h)

2r + λH

− e−rh
(
1 − e−λH h

)]
gρ(1 − ρ)

+
(

r(eλH h − 1) − λH (1 − e−rh)

r + λH

)[
(1 − ρ)ρ


S

ρ(1 − ρ

S)

]1+r/λH

gρ(1 − ρ)

−
[
(r + λH )e−rh − λH − re−(r+λH )h

r + λH

+ r(eλH h − 1) − λH (1 − e−rh)

r + λH

][
(1 − ρ)ρ


I

ρ(1 − ρ

I )

]1+r/λH

gρ(1 − ρ).

Notice ρh > ρ

I implies that [ (1−ρ)ρ


I

ρ(1−ρ

I )

]1+r/λH < (e−λH h)1+r/λH . Hence, US(ρ) − Û (ρ; h) ≥ 0 if

X(h) � S(h)e(r+λH )h + rT (h)

r + λH

([
(1 − ρ


I )ρ


S

ρ

I (1 − ρ


S)

]1+r/λH

− 1

)

− (r + λH )e−rh − λH − re−(r+λH )h

(r + λH )
≥ 0.

It is straightforward to check that at h = 0,

e(r+λH )hS(h) − rT (h)

r + λH

− (r + λH )e−rh − λH − re−(r+λH )h

r + λH

= 0,

implying that X(0) > 0. Therefore, there must exist h̄ such that it is not profitable to deviate for 
h ≤ h̄ length of time as well. �

The next step is to show after some deviations, that neither the deviator nor the non-deviator 
wants another one-shot deviation.

Lemma 4. Given that the deviator has deviated h length of time in total, it is not profitable for 
either buyer to have another deviation: for any posterior beliefs ρ and ρh, there exists h̄ > 0
such that it is not profitable for a buyer to deviate for any h′ < h̄ length of time.

Proof. For any posterior beliefs ρ and ρh, the seller can either sell only to the deviator or sell 
to both buyers. Completely characterizing the seller’s optimal decision is complicated. However, 
we aim to prove that no matter what the seller’s optimal choice is, it is always unprofitable to 
have a one-shot deviation.
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First, we consider the deviating incentive of the deviator. Assume that after the h-deviation, the 
monopolist sells only to the deviator. Then setting UD(ρ, ρh) = s is sufficient to deter deviations. 
If the monopolist sells to both buyers, then if the deviator deviates another h′ length of time, the 
value function Ûh(ρ; h′) satisfies:

Ûh
(
ρ;h′) − s = e−rh′[

1 − ρh

(
1 − e−λH h′)](

UD(ρ,ρh+h′) − s
);

while if the deviator does not deviate, the value function is UD(ρ, ρh). Given the expressions 
of off the equilibrium path value function UD(ρ, ρh), we are also able to show that there exists 
h̄ > 0 such that it is not profitable to deviate for h′ ≤ h̄ length of time. The intuition is clear: after 
the deviation, the price is set such that the non-deviator is indifferent and, hence, the deviator 
should strictly prefer purchasing. The proof is similar to the tedious proof of Lemma 3 and is 
omitted.

Second, we need to show that the non-deviator has no interest in taking on the role of the 
deviating buyer by deviating for another period of time. If the monopolist sells only to the de-
viator, it is obviously non-profitable for the more pessimistic non-deviator to purchase the risky 
product. We thus only need to show, if the monopolist sells to both buyers, that the ρh buyer will 
not deviate for any h′ length of time. Notice that it suffices to consider h′ ≤ h because Lemma 4
already implies that it is not optimal to deviate beyond the point when h′ exceeds h. The value 
associated with an h′-deviation is provided by:

Ũ
(
h′) =

h′∫
t=0

re−rt sdt + ρ
(
1 − e−λH h′)

e−rh′
s + [

1 − ρ
(
1 − e−λH h′)]

e−rh′
UND(ρh,ρh′).

Given

UND(ρ,ρh) = s + Ch × (1 − ρ)

(
1 − ρ

ρ

)r/λH

,

it is straightforward to show: UND(ρ, ρh) ≥ Ũ (h′) for all h′ ≤ h. �
Finally, we are in a position to show that any admissible deviation is not profitable. Suppose 

on the contrary, there exists another admissible strategy α̃1 (could be non-Markovian) for buyer 
1 such that the value under this strategy is higher than the equilibrium value for some ρ

U1
(
α̃1,P

∗, α∗
2;ρ) − US(ρ) = ε > 0.

Notice by the definition of admissible strategies, α̃1 can be written as the limit of a sequence of 
strongly admissible strategies α̃k

1 . Take sufficiently large T and define a new strategy α̂1 as:

α̂1 =
{

α̃1 if t < T ;
α∗

1 if t ≥ T .

For sufficiently large T , this new strategy also generates a value higher than US(ρ).20 Similarly 
define α̂k

1 such that ε′
k in Definition 3 is 1

k
and, obviously, α̂1 is the limit of α̂k

1 . For each α̂k
1 , there 

can be at most a finite number of deviations in a finite time interval [0, T ). Since

20 Notice that the value that each buyer is able to get cannot exceed g. Therefore, we can choose T such that e−rT g =
ε/2.
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U1
(
α̂1,P

∗, α∗
2;ρ) = lim

k→∞U1
(
α̂k

1,P ∗, α∗
2;ρ)

> US(ρ),

U1(α̂
k
1, P ∗, α∗

2; ρ) > US(ρ) for sufficiently large k. This implies that for sufficiently large k, there 
must exist profitable one-shot deviations. However, this contradicts Lemma 3 and Lemma 4. �
B.5. Proof of Proposition 3

Proof. Solving the ordinary differential equations in Proposition 2 yields:

US(ρ) = s + rλH

(2r + λH )(r + λH )
gρ(1 − ρ) − λH g

r + λH

ρ

S(1 − ρ)2

1 − ρ

S

(
(1 − ρ)ρ


S

ρ(1 − ρ

S)

)r/λH

+ D(1 − ρ)2
(

1 − ρ

ρ

)2r/λH

, (28)

for any ρ

S < ρ ≤ ρ


I . US(ρ

S) = s then implies

D = λH g

2r + λH

(
ρ


S

1 − ρ

S

)1+2r/λH

.

Substituting this expression into Eq. (8) yields

PS

(
ρ


S

) = ρ

Sg − s.

Then boundary conditions

JS

(
ρ


S

) = 0 and J ′
S

(
ρ


S

) = 0

immediately imply that ρ

S should satisfy equation

ρ = rs

rg + λH g − λH s
= rs

rg + λH (VI (ρ) + JI (ρ)) − λH s
.

We also need to rule out the possibility that ρ

S ≥ ρ


I . Suppose, on the contrary, that this can be 
true. Therefore, after receiving a lump-sum payoff, the monopolist always keeps selling to both 
buyers. Using the same procedure, we are able to show that in this case, the value US(ρ) satisfies 
differential equation

0 = 2(r + λH ρ)
(
US(ρ) − s

) + λH ρ(1 − ρ)U ′
S(ρ)

+ (r + λH ρ)g(1 − ρ)

(
(1 − ρ)ρ


I

ρ(1 − ρ

I )

)r/λH

− λH gρ(1 − ρ)

−
[
r + λH ρ


S

1 − ρ

S

(
ρ


I

1 − ρ

I

)r/λH

− λH

(
ρ


S

1 − ρ

S

)1+r/λH
]
g(1 − ρ)2

(
1 − ρ

ρ

)r/λH

. (29)

By some algebra, we obtain ρ

S , which should also satisfy equation:

ρ = rs

rg + λH (VI (ρ) + JI (ρ)) − λH s
.

For ρ > ρ

I ,

VI (ρ) + JI (ρ) > VI

(
ρ


) + JI

(
ρ


) = g.
I I
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Therefore, we have

ρ

S = rs

rg + λH (g − s)
< ρ


I ,

which leads to a contradiction. �
B.6. Proof of Corollary 1

Proof. From Proposition 2 and Eq. (8), we can solve the equilibrium price as:

PS(ρ) = ρg − s − λH

2r + λH

gρ(1 − ρ) + D(1 − ρ)2
(

1 − ρ

ρ

)2r/λH

(30)

for ρ

S < ρ ≤ ρ


I , and

PS(ρ) = ρg − s + λH

2r + λH

gρ(1 − ρ)

+
(

D − 2λH g

2r + λH

(
ρ


I

1 − ρ

I

)1+2r/λH
)

(1 − ρ)2
(

1 − ρ

ρ

)2r/λH

(31)

for ρ > ρ

I . The constant D is given in the proof of Proposition 3:

D = λH g

2r + λH

(
ρ


S

1 − ρ

S

)1+2r/λH

.

Obviously, when ρ

S < ρ ≤ ρ


I ,

PS(ρ) − PI (ρ) = −g(1 − ρ) − λH

2r + λH

gρ(1 − ρ) + D(1 − ρ)2
(

1 − ρ

ρ

)2r/λH

< 0.

And, for ρ > ρ

I ,

PS(ρ) − PI (ρ) =
[

λH g

2r + λH

(
ρ

1 − ρ

)1+2r/λH

+ D − 2λH g

2r + λH

(
ρ


I

1 − ρ

I

)1+2r/λH
]

× (1 − ρ)2
(

1 − ρ

ρ

)2r/λH

.

As ρ approaches ρ

I , PS(ρ) − PI (ρ) < 0 since ρ


I > ρ

S . The term

λH g

2r + λH

(
ρ

1 − ρ

)1+2r/λH

+ D − 2λH g

2r + λH

(
ρ


I

1 − ρ

I

)1+2r/λH

is increasing in ρ, and is positive for ρ close to 1. Therefore, there must exist ρ̄ > ρ

I such that 

PS(ρ) − PI (ρ) > 0 for ρ > ρ̄, and PS(ρ) − PI (ρ) < 0 for ρ < ρ̄. �
B.7. Proof of Theorem 1

Proof. Denote ρ

k to be the equilibrium cutoff such that at this belief, the monopolist would stop 

selling to the unknown buyers when k ≥ 1 buyers have received lump-sum payoffs. Let Vk , Uk

and Jk be the equilibrium value functions for the known buyers, the unknown buyers and the 
monopolist, respectively, when k ≥ 1 buyers have received lump-sum payoffs. Finally, let Pk

denote the price charged by the monopolist. From a backward procedure, it could be shown that:
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Lemma 5. The equilibrium cutoffs satisfy

ρ

k = nrs + kr(g − s)

nrg + (n − k)λH (g − s)

and

ρe < ρ

k < ρ


k+1

for all 0 ≤ k ≤ n − 1.

Proof. The lemma is proved by induction. If all of the buyers turn out to be good, then it is 
optimal for the monopolist to charge g − s and fully extract the total surplus. If all but one 
buyer has already received a lump-sum payoff, the monopolist faces the same tradeoff between 
exploitation and exploration as in the two-buyer case. The monopolist has to charge gρ − s to 
keep the unknown buyer experimenting. Her value function from selling to the unknown buyer 
satisfies equation

(r + ρλH )Jn−1(ρ) = nr(gρ − s) + nρλH (g − s) − λH ρ(1 − ρ)J ′
n−1(ρ);

with boundary conditions

Jn−1
(
ρ


n−1

) = (n − 1)(g − s) and J ′
n−1

(
ρ


n−1

) = 0.

It is straightforward to see that:

ρ

n−1 = rs + (n − 1)rg

λH (g − s) + nrg

and

Jn−1(ρ) = max

{
(n − 1)(g − s), n(gρ − s) + [

(n − 1)g + s − ngρ

n−1

]

× 1 − ρ

1 − ρ

n−1

[
(1 − ρ)ρ


n−1

(1 − ρ

n−1)ρ

]r/λH
}
.

Meanwhile, the value for the known buyers is given by:

Vn−1(ρ) = max

{
s, s + g(1 − ρ)

(
1 −

[
(1 − ρ)ρ


n−1

ρ(1 − ρ

n−1)

]r/λH
)}

.

If all but two buyers have received lump-sum payoffs, the value function for the monopolist 
becomes:

Jn−2(ρ) = max

{
(n − 2)(g − s), nPn−2(ρ) + 2ρλH

r

[
Jn−1(ρ) − Jn−2(ρ)

]
− λH ρ(1 − ρ)

r
J ′

n−2(ρ)

}
.

If the monopolist sells to the unknown buyers, the price Pn−2 is set such that the unknown 
buyers have an incentive to keep experimenting:

rPn−2(ρ) = r
(
ρg − Un−2(ρ)

) + λH ρ
(
s − Un−2(ρ)

) + λH ρ
(
Vn−1(ρ) − Un−2(ρ)

)
− λH ρ(1 − ρ)U ′ (ρ).
n−2
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Value matching and smooth pasting conditions mean that at the equilibrium cutoff ρ

n−2,

Un−2
(
ρ


n−2

) = s, U ′
n−2

(
ρ


n−2

) = 0, Jn−2
(
ρ


n−2

) = (n − 2)(g − s) and

J ′
n−2

(
ρ


n−2

) = 0.

The above equations imply that ρ

n−2 satisfies equation

(n − 2)(g − s) = n

{
ρ


n−2g − s + ρ

n−2λH

r

[
Vn−1

(
ρ


n−2

) − s
]}

+ 2ρ

n−2λH

r

[
Jn−1

(
ρ


n−2

) − (n − 2)(g − s)
]
.

If ρ

n−2 > ρ


n−1, then Vn−1(ρ


n−2) > s and Jn−1(ρ



n−2) > (n − 1)(g − s). But this implies

(n − 2)(g − s) > n
(
ρ


n−2g − s
) + 2ρ


n−2λH

r
(g − s)

�⇒ ρ

n−2 <

2rs + (n − 2)rg

2λH (g − s) + nrg
< ρ


n−1 = rs + (n − 1)rg

λH (g − s) + nrg
.

This contradicts the assumption that ρ

n−2 > ρ


n−1. Therefore, it must be the case that ρ

n−2 ≤

ρ

n−1 such that Vn−1(ρ



n−2) = s and Jn−1(ρ



n−2) = (n − 1)(g − s). It is straightforward to see

ρ

n−2 = 2rs + (n − 2)rg

2λH (g − s) + nrg
.

For general 0 ≤ j ≤ n − 1, assume

ρ

k = nrs + kr(g − s)

nrg + (n − k)λH (g − s)

for k ≥ j + 1. At ρ

j ,

j (g − s) = n

[(
ρ


j g − s
) + λH ρ


j

r

(
Vj+1

(
ρ


j

) − s
)]

+ (n − j)λH ρ

j

r

[
Jj+1

(
ρ


j

) − j (g − s)
]
.

It is similar to show by contradiction that it is impossible to have ρ

j > ρ


j+1 and hence the 
equilibrium cutoff can be solved as

ρ

j = nrs + jr(g − s)

nrg + (n − j)λH (g − s)
.

A standard induction argument then implies that for all 0 ≤ k ≤ n − 1, we would have

ρ

k = nrs + kr(g − s)

nrg + (n − k)λH (g − s)

and it is trivial to check that

ρe < ρ

k < ρ


k+1

for all 0 ≤ k ≤ n − 2. �
Lemma 5 means that the equilibrium stopping rule is inefficient for k ≥ 1. However, as in 

Proposition 3, the equilibrium cutoff ρ

0 is always the same as the socially efficient cutoff ρe. �
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B.8. Proof of Theorem 2

Proof. When k buyers have already received lump-sum damages, the monopolist chooses to sell 
to the unknown buyers if:

Jk(ρ) = (n − k)(A − ρB − s)

+ 1

r

[
(n − k)λH ρ

(
Jk+1(ρ) − Jk(ρ)

) − λH ρ(1 − ρ)J ′
k(ρ)

] ≥ 0.

An induction argument is used to solve the equilibrium cutoffs. First,

Jn−1(ρ) = A − s − λH (A − s + rB
λH

)

r + λH

ρ ≥ 0

if and only if ρ ≤ ρ

n−1 = ρe. We can guess that

Jk(ρ) = (n − k)

[
A − s − λH (A − s + rB

λH
)

r + λH

ρ

]
.

Suppose this is true for j = k + 1, · · · , n − 1, then solving differential equation

Jk(ρ) = (n − k)(A − ρB − s) + 1

r

[
(n − k)λH ρ

(
Jk+1(ρ) − Jk(ρ)

) − λH ρ(1 − ρ)J ′
k(ρ)

]
yields

Jk(ρ) = (n − k)

[
A − s − λH (A − s + rB

λH
)

r + λH

ρ

]
.

The conjecture about Jk(ρ) hence is justified by induction.
Obviously,

Jk(ρ) = (n − k)

[
A − s − λH (A − s + rB

λH
)

r + λH

ρ

]
≥ 0

if and only if ρ ≥ ρe for all k ≥ 1. Therefore, the symmetric Markov perfect equilibrium is 
efficient for any k ≤ n. �
Appendix C. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2014.11.016.
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